Protein nitration impairs the myogenic tone of rat middle cerebral arteries in both ischemic and nonischemic hemispheres after ischemic stroke.

نویسندگان

  • Maha Coucha
  • Weiguo Li
  • Maribeth H Johnson
  • Susan C Fagan
  • Adviye Ergul
چکیده

The myogenic response is crucial for maintaining vascular resistance to achieve constant perfusion during pressure fluctuations. Reduced cerebral blood flow has been reported in ischemic and nonischemic hemispheres after stroke. Ischemia-reperfusion injury and the resulting oxidative stress impair myogenic responses in the ischemic hemisphere. Yet, the mechanism by which ischemia-reperfusion affects the nonischemic side is still undetermined. The goal of the present study was to determine the effect of ischemia-reperfusion injury on the myogenic reactivity of cerebral vessels from both hemispheres and whether protein nitration due to excess peroxynitrite production is the underlying mechanism of loss of tone. Male Wistar rats were subjected to sham operation or 30-min middle cerebral artery occlusion/45-min reperfusion. Rats were administered saline, the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III), or the nitration inhibitor epicatechin at reperfusion. Middle cerebral arteries isolated from another set of control rats were exposed to ex vivo oxygen-glucose deprivation with and without glycoprotein 91 tat (NADPH oxidase inhibitor) or N(ω)-nitro-l-arginine methyl ester. Myogenic tone and nitrotyrosine levels were determined. Ischemia-reperfusion injury impaired the myogenic tone of vessels in both hemispheres compared with the sham group (P < 0.001). Vessels exposed to ex vivo oxygen-glucose deprivation experienced a similar loss of myogenic tone. Inhibition of peroxynitrite parent radicals significantly improved the myogenic tone. Peroxynitrite scavenging or inhibition of nitration improved the myogenic tone of vessels from ischemic (P < 0.001 and P < 0.05, respectively) and nonischemic (P < 0.01 and P < 0.05, respectively) hemispheres. Nitration was significantly increased in both hemispheres versus the sham group and was normalized with epicatechin treatment. In conclusion, ischemia-reperfusion injury impairs vessel reactivity in both hemispheres via nitration. We suggest that sham operation rather than the nonischemic side should be used as a control in preclinical stroke studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effect of Delayed Ischemic Postconditioning on Embolic Stroke Complications in Female Rat

Background & Aims: Ischemic postconditioning, conducted by a series of brief occlusion and release of the bilateral common carotid arteries, has neuroprotective properties in permanent or transient models of middle cerebral artery (MCA) occlusion but its delayed neuroprotective effects in the embolic model of stroke, especially in female rat, have not yet been reported and were investigated ...

متن کامل

Responses of surface arteries and blood flow of ischemic and nonischemic cerebral cortex to aminophylline, ergotamine tartrate, and acetazolamide.

Responses of Surface Arteries and Blood Flow of Ischemic and Nonischemic Cerebral Cortex to Aminophylline, Ergotamine Tartrate, and Acetazolamide • In cats in which one middle cerebral artery was occluded, cortical blood flow (CBF) was measured and the superficial cortical microvasculature was observed bilaterally before and after the intravenous injection of a vasoactive drug. Aminophylline pr...

متن کامل

P1: Dextran Curcumin Promotes Novel Object Recognition Memory in Rats after Ischemic Stroke

Ischemic stroke causes the depletion of energy and induces excitotoxicity and neuroinflammation in the brain that results from thrombotic blockage. Cerebral ischemia leads to many types of memory loss, including impairment of working, spatial and object recognition memoreis. Curcumin shows strong anti-oxidoinflammatory activities but it terapathics limited by its low solubility in water and cor...

متن کامل

SOD1 overexpression prevents acute hyperglycemia-induced cerebral myogenic dysfunction: relevance to contralateral hemisphere and stroke outcomes.

Admission hyperglycemia (HG) amplifies vascular injury and neurological deficits in acute ischemic stroke, but the mechanisms remain controversial. We recently reported that ischemia-reperfusion (I/R) injury impairs the myogenic response in both hemispheres via increased nitration. However, whether HG amplifies contralateral myogenic dysfunction and whether loss of tone in the contralateral hem...

متن کامل

Quantitative evaluation of Blood Brain Barrier permeability in transient focal cerebral ischemia in the rat

Introduction: Development of brain edema following focal cerebral ischemia exacerbates primary ischemic injury. Blood brain barrier (BBB) opening is an important part of edema named as vasogenic brain edema. In this study, quantitative alterations of BBB permeability is experimentally evaluated using transient focal cerebral ischemia in the rat. Methods: Two groups of male rats (ischemic and sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 305 12  شماره 

صفحات  -

تاریخ انتشار 2013